Improved Control Algorithm for Infrared Paper Dryers

ECE 480 Senior Design Review

November 17, 2005

Blake Peck
Rob Schaerer
Jay Hudkins
Carl Lee

Instructor: Dr. Joe Law
Technical Advisor: Dr. Joe Law
Sponsor: Potlatch Corporation, Pulp and Paper Division
Presentation Outline

• Background
 • Previous Design Work
 • November 3rd Tour
 • Design Concept 1
 • Design Concept 2
 • Design Concept 3
 • What’s Next?
Background - Paper Manufacturing

• Uniform Moisture Content = Good Paper
• IR Dryers:
 – Divide paper sheet into “zones”
 – Monitor zone moisture content
 – Adjust zone heat
Background – Control System

Paper Line
- Moisture Sensor

Control Room
- Operator Computer

Control Rack
- Phase Monitoring
- CPU Card
- Trigger Card 1
- Trigger Card 2
- Trigger Card 3
- Trigger Card 4

Power Computer
- Gate Drivers/Thyristors

IR Lamps

RS 485
Background - Potlatch Installation

- Potlatch purchased IR Dryers from Compact Engineering Ltd.
- Present Control algorithm doesn’t consider cumulative effect of individual lamp loads
- Some Total Harmonic Distortion (THD)
- High Crest Factor (CF)
Previous Design Work

• Spring 05’ design team
 – Created improved control algorithm
 • Decreases THD and Crest Factor
 – Tested algorithm with scaled system model
 – Provided demonstration of concept
 – Provided architecture for power computer
November 3rd Tour – Big Picture

- High level perspective of control hardware
- Understanding of physical locations
November 3rd Tour – Cabinets

Power Cabinet

Control Cabinet

11/17/05
November 3rd Tour – PMU

• Phase monitoring unit
 – Detects zero crossings
 – Build or Purchase
November 3rd Tour – PMU

• Layout
 – 30 hours @ $30/hour = $900

• Fabrication
 – $400

• Total = $1300
November 3rd Tour – Knowledge Gained

- Arcom manufactures Power Computer, CPU card, and SERT 485 board
- Thyristor connection details
- RS 485 hardware connections
- Phase transformer specifications
Conceptual Design – Current System

- **Issues:**
 - Some THD
 - High CF
Conceptual Design – Design 1

• **Pro’s:**
 – Least expensive solution for paper machine #1
 – Less new hardware design
 – Majority of current system left in tact

• **Con’s:**
 – More reverse engineering
 – Stuck with power computer architecture
 – Modify Compact’s power computer code
Conceptual Design – Design 2

- **Pro’s:**
 - Less reverse engineering
 - High quality power computer documentation
 - Lower long term cost

- **Con’s:**
 - Higher development cost
 - More design engineering
 - More testing required
Conceptual Design – Design 3

• **Pro’s:**
 - Little to no reverse engineering
 - Develop new communication protocol
 - Easily managed user defined power levels

• **Con’s:**
 - Most development cost
 - More development time
 - Require extensive testing
What’s Next? – Project Tasks

• **Detailed knowledge of 1st team’s work**
 – Jay with Rob

• **Operator and Power Computer code**
 – Blake with Carl

• **Hardware design**
 – Carl with Blake

• **Impact of 3-phase power**
 – Rob with Jay

• **Test and verification plan**
 – Carl with everyone

• **System documentation and organization**
 – Rob with Jay

11/17/05
What’s Next? – Contact Points

- End of conceptual design
 - Mid November
- Approval of proposal
 - Mid January
- System built for testing
 - End of February
- System testing complete
 - End of March
- Installation
 - Next shutdown in April
Acknowledgements

• Joe Law
• Jerry Spencer
• Team #1
Questions?