Faculty Meeting
March 20, 2007
Team D.E.A.D.S
Presents: Dr. Wall, Ngon Du, Lassen Loop, Travis Taylor

Agenda:

1) Review team research on sensors and solenoids technology with Dr. Wall
2) Narrow down solution choices and use decision matrix to select the final design choices
3) Others/What’s next?

Action:

- Lassen showed two options for sensor technologies. Some of them didn’t have datasheet; showed available sensors as PCB from GlobalSpecs that seem relatively cheap and meet some of the project specs.
- Ngon had sensor from Honeywell but no datasheet is available.
- The datasheet for sensor technologies will be posted on web to help team member formulate the decision matrix

 Note: If there are sensors that you see that could be used for our project, try to contact the manufacturer for datasheet/specifications

Problem1: Some of the sensors meet the project specifications but cost more than allowed budget, some are relatively cheaper but don’t meet some of the project specs (i.e. long detection range).

Answer1: Dr. Wall discussed about the design tradeoff. You won’t always find a design solution that fits perfectly to the client’s specifications. So use something like a decision matrix to find the best of all gathered alternative solutions.

Decision Matrix:

- Rate the following factors in our decision matrix: battery-life, indoor/outdoor, easy of integration, day/night operation, weight, detection range, communication range.

- For each item: give it a weight 1-5 (1=high priority, 5=low priority)
- Give sensors with communication a 1, and 0 for sensors without communication
- Will formulate a decision matrix for sensors, communication, control/actuator, valves/solenoids

=> Contact clients: tell them what we found and maybe settle for 1 sensor because we might have to use one long range sensor.
Goals For Next Time:
- By Wed afternoon, send links and data sheet for sensors to team website in order for everyone to formulate their decision matrix.
- Research on solenoids/valves technology