AESD - Fuel Cell Integration Study

DESIGN REVIEW

Team Members
Dave Pedersen
Ryan Britschgi
Dirk Lundgren
Project Background

• AESD - Advanced Electric Ship Demonstrator
 - Referred to as SEAJET
• Large scale surface ship model
• Operated at Lake Pend Oreille
Project Background

- Current system configuration
 - Transit propulsion power by diesel generator
 - Battery operated during test runs
Transit Mode Power Flow
System Limitations

- Recharge time
- Limited run time
Customer Needs

- High energy density
- Silent operation
- Coordinate with existing distribution system
- Minimal ship modifications
- Proof of concept report
Senior Design Project

Main Objective:
- Complete an advanced Fuel Cell Integration Study on SEAJET
Design Approach

- Establish specifications
- Finalize design options
- Create system model
- Test design options
- Analyze results
Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>714V±5% (tolerance of nominal voltage)</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>Provide the same range as the battery over discharge (580-750V(_{DC}))</td>
</tr>
<tr>
<td>Current</td>
<td>Must be capable of providing at least 75 A/string or TBD if batteries replaced.</td>
</tr>
<tr>
<td>Power/Energy</td>
<td>50kW per string replaced; Allow ship to conduct at least 6 high speed runs consecutively.</td>
</tr>
</tbody>
</table>
Specifications (cont.)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>Fit in to existing space (battery rack)</td>
</tr>
<tr>
<td>Fuel Storage</td>
<td>Meet NAVSEA and Idaho State requirements for fuel storage.</td>
</tr>
<tr>
<td>User Interface</td>
<td>Remote means of control, monitoring, and safety shutdown is necessary due to ship maning.</td>
</tr>
</tbody>
</table>
Interface Options Summary

- Option #1
 - Replace 3 of 12 battery strings with fuel cells
- Option #2
 - Replace all 12 battery strings with fuel cells
- Option #3
 - Replace entire power system with fuel cells
Interface Option #1

• Replace 3 of 12 battery strings with fuel cells
 - Each string will be required to match existing battery strings +/- 5% for voltage and current
 - Requires DC-DC conversions
 - Output power per string must be at least 50kW
Interface Option #2

• Replace all 12 battery strings with fuel cells
 - Allows operation of RIMJET drive independent of batteries
 - Removes need for DC charging system
 - Hotel system distribution battery powered
Option #2 Diagram
Interface Option #3

• Replace entire power system with fuel cells
 - DC-DC conversion
 - Larger fuel cell power system
Option #3 Diagram

- Fuel Cell
- Transit Transformer
- Distribution Transformer
- Switch Gear
- Motor Drives
- Distribution
- RIM Jet
Fuel Cell Characteristics

- Fuel Cells
 - Quiet
 - Need for external fuel
 - High energy density
 - Response times
 - DC output
Initial Fuel Cell Types Considered

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>Cell Temp (°F)</th>
<th>Projected Lifetime (HRS)</th>
<th>Cell Contaminant</th>
<th>Single-Cycle Electrical Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proton Exchange Membrane</td>
<td>180</td>
<td>40,000</td>
<td>S,CO</td>
<td>35-40</td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>450</td>
<td>40,000</td>
<td>S,CO</td>
<td>35-40</td>
</tr>
<tr>
<td>Molten Carbonate</td>
<td>1200</td>
<td>40,000</td>
<td>S</td>
<td>45-55</td>
</tr>
<tr>
<td>Solid Oxide</td>
<td>1800</td>
<td>40,000</td>
<td>S</td>
<td>45-60</td>
</tr>
</tbody>
</table>
Fuel Cell Selection

- Proton Exchange Membrane (PEM)
PEM Characteristics

<table>
<thead>
<tr>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast start up time</td>
<td>Easily Poisoned</td>
</tr>
<tr>
<td>Low operating temperature</td>
<td>Expensive</td>
</tr>
<tr>
<td>Waste water</td>
<td>Only hydrogen</td>
</tr>
<tr>
<td></td>
<td>Requires fuel reformer</td>
</tr>
<tr>
<td></td>
<td>Relatively low efficiency</td>
</tr>
</tbody>
</table>
Fuel Cell Selection

• Molten Carbonate
Molten Carbonate Characteristics

Pros
- Not easily poisoned
- Not as expensive
- Various fuels
- No fuel reformer
- Relative high efficiency
- Removes carbon dioxide

Cons
- Slow start up time
- High operating temperature
Modeling and Simulation

- Model current system with MATLAB
- Model fuel cell characteristics
- Model design options for comparison
Analysis

- Construct a lab scale hardware model
- Evaluate fuel cell performance
- Economic cost analysis per option
Results

• Determine cost and benefits for each option
• Recommend best fit design option based on analysis
• Provide final report
Progress To Date

- Established specifications
- Design options
- MATLAB model
- Fuel cell types
Budget

• $8000
• Current Expenditures
 - Travel to Bayview
• Future Expenditures
 - Travel to Bayview
 - Fuel Cell support equipment
 • Electrical Components
Year End Plans

- Continued computer modeling with MATLAB and SIMULINK
- In lab prototype design
- Design analysis
- Cost analysis
- Work analysis
Milestones

• 30 November
 - Snapshot Day Presentation

• January/February
 - Detailed Design Review

• April 25th
 - Senior Design Expo
Acknowledgements

ONR Power Management, Small Naval Vessels

NSWCCD ARD
Alan R. Griffitts
Karl R. Sette
Frank J. Jurenka

University of Idaho
Dr. Herb L. Hess
Dr. Brian K. Johnson

Additional Support
James M. Klein
John Finley