Autoliv Tour Minutes
Date: October 9, 2008
Location: Autoliv, Brigham City, Utah

10:30
Arrived at facility and Gathered in Conference Room
• Day's agenda discussed
• Coffee provided

Tour Production Line
• Test bay
 o Testing product
 o Fire pyrotechnic inflator in closed vessel
 o Measure pressure vs. time
 o Test from -40 C to 90 C
• ACH Inflator (cold gas)
 o High pressurized, cold gas
 o ID # given at beginning of process
 o Inertia welded base of part onto vessel
 o Vessel filled with gas (pre weighed so they know how much gas to fill it with)
 o Resistance welded with small bb to keep gas in
 o Post weighed with gas inside
 o Parts sit for 4 hours to allow the helium to escape (via impurities/inclusions)
 o Part is then leak checked
 ▪ If the part passes, certified for 15 year life cycle (in car)
 o 2 diffusers crimped on and part length is measured
 o Electrical circuit checked
 o Weight label added (for external customers to verify)

Pyrotechnics
• One line produces both passenger and driver
• SMART – fires based on size of person in seat
 o Both chambers fire, just not always at the same time
• Inflator ignites fuel
• Fuel burns green tablets
• Tablets produce gas
• Gas diffuses into airbag
• Passenger Inflator:
 o Raw base – oriented in first step of the process
 o First machine applies barcode
 o Projection welding (glorified spot weld)
 ▪ Welding adapter to base
 ▪ Secondary adapter welded on
 o Heat removed – part slides down cooling belt
• Initiator crimped onto adapter
 ▪ O-ring creates hermetic seal
 ▪ Camera takes picture to check if o-ring fails/dislodges
• Igniter tube (press bit operation)
 ▪ Notch is off-centered to control orientation easier
• 2nd stage cup is press fitted around other adapter
 ▪ Different companies request different amounts of fill
• Part is weighed
• Generate is filled
• Part is weighed again to make sure amount of generate is correct
• 2nd stage lid is pressed on
• Main stage loader
 ▪ Filter pressed in
 ▪ Particulates filtered from entering airbag
 ▪ Cools gas so it doesn’t burn bag upon inflation
 ▪ Creates cavity
 ▪ Preweighed and post weighed
 ▪ Lid put on
 ▪ Robot loads part into inertia welder
 ▪ Inertia welds diffuser onto top of part
 ▪ Very uniform weld
 ▪ Loaded onto cooling matrix
 ▪ Leak checked – looking for helium
 ▪ He added in the beginning for this very purpose
 ▪ Caution label added
 ▪ Shorting clip added – electrical connection
• Side Inflator:
 o No welding involved
 o Only cleanliness issue is barcode falling off the outside
 o Mild steel used
 o Rust inhibitor may be issue
 ▪ Not getting rinsed off?
 ▪ Looking at laser etching a 2D barcode instead of sticker
 ▪ Laser could possibly clean entire surface and then etch label
• Process:
 ▪ I operator
 ▪ Z-height measured
 ▪ Filter inserted
 ▪ Orifice loaded (looks like washer)
 ▪ Critical to the inflator
 ▪ Crimp station
 ▪ Welder used is projection welder
 ▪ Welds stud to outside of part for mounting in car
 ▪ Baffle
 ▪ Dropped inside gen-cam
 ▪ Offloaded
- Barcode applied
- Unloaded into new station
- Auto ignition tablets added
 - Ignite at lower temp
 - Allows for deployment and not an explosion
 - Loads 6 tablets
- Preweighed and postweighed after generate is filled
 - Weighed and counted
- Helium injected for future leak checks
- IMI attached
 - Plastic initiator
 - O-ring provides hermetic seal
- IMI is crimped into place
-Leaks checked
 - Sniffs for helium
 - Sometimes gives faulty results due to background helium noise
- Offloaded and complete
 - ASH assembly
 - Uses resistance welds and laser welds

Laser Weld
- Biggest issue
- Susceptible to porosity
 - Due to contamination?
- 6 mm has more problems than 8 mm
- Contaminants from washer
- Leaks sometimes don’t show themselves for days/weeks

Wash Process
- Parts loaded into washer
 - Rotating drum washer
 - But they have a new washer being set up
- 2 wash cycles
- 1 rinse cycle
- 1 dry cycle
- Sometimes it works, sometimes it doesn’t
- Dual drum, single drum, and basket washers in facility
- Wash rotated every day
- Wash chemical – potassium hydroxide
 - Titration test tells concentration
 - 2 times per shift
 - No way to determine if wash is “spent”
 - Parts coming in from all over the way
 - Many different suppliers
 - Weather and climate effect cleanliness
 - Stored in bins inside facility
- Titrations
• HCl with methyl orange indicator
 ▪ Bromophenol blue
• Take population of parts
 o Coat them
 o Wash parts
 o See pattern of cleanliness
 o Uniform, patterned, etc.

Notes:
• Looking for a clean parts standard
• Need to maintain pH of wash
• Optimize wash process
• SMART goals
 o Specific
 o Measureable
 o Ambitious
 o Relevant
 o Timebased

2:00
Conference Discussion after Completed Tour
• Brandon’s idea
 o Determining spent fuel
 ▪ Look at correlation of pH to wash cycle (time)
 ▪ Compare with weld failure and look for correlation
 ▪ Maybe a decrease in pH will define “spent” fuel
 ▪ Also look at elements present/concentration
 ▪ Previously, Autoliv used to check pH
 ▪ For disposal purposes
• Have not yet looked at surfactant
 o Lowers surface tension
 o Helps pull hydrocarbons off surface
• Don’t know current PM on Epic Wash (yet)
 o New basket washer – not yet in service
• When we receive parts what kind of documentation will come with?
 o Wash history?
 o Failure rates/history?
 o We can use serial number to track data
 o They’ll send all the info that they can, but we can request more